$$
5.1
$$

Fundamental Identities

Pythagorean Identities

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

Cofunction Identities

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta & \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta & \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta \\
\sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta & \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta
\end{array}
$$

Even-Odd Identities

$$
\begin{array}{lll}
\sin (-x)=-\sin x & \cos (-x)=\cos x & \tan (-x)=-\tan x \\
\csc (-x)=-\csc x & \sec (-x)=\sec x & \cot (-x)=-\cot x
\end{array}
$$

EX: Simplifying by Factoring and Using Identities

Simplify the expression $\cos ^{3} x+\cos x \sin ^{2} x$.

EX: simplifying by Factoring and Using Identities

Factor $\csc ^{2} x-\cot x-3$

EX: Simplifying by Expanding and Using Identities

Simplify the expression: $\frac{(\csc x-1)(\csc x+1)}{\cos ^{2} x}$

EX: simplifying by Adding and Using Identities

Class/Homework: pg. 451(1-50)

Turn in all odd problems before you leave today!

Evens are due at the beginning of class tomorrow!

